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Abstract. We study the Cu5O4 cluster by exact diagonalization of a three-band Hubbard model and show
that bound electron or hole pairs are obtained at appropriate fillings, and produce superconducting flux
quantization. The results extend earlier cluster studies and illustrate a canonical transformation approach
to pairing that we have developed recently for the full plane. The quasiparticles that in the many-body
problem behave like Cooper pairs are W = 0 pairs, that is, two-hole eigenstates of the Hubbard Hamiltonian
with vanishing on-site repulsion. The cluster allows W = 0 pairs of d symmetry, due to a spin fluctuation,
and s symmetry, due to a charge fluctuation. Flux quantization is shown to be a manifestation of symmetry
properties that hold for clusters of arbitrary size.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 71.10.Li Excited
states and pairing interactions in model systems – 74.72.-h High-Tc compounds

1 Introduction

In many high-Tc cuprates, one has superconductivity at
concentrations about 1.2 holes/Cu atom, that is, some-
what above the antiferromagnetic region at half filling.
In some cases, one finds superconductivity below half fill-
ing. Usually, one considers half filling as the vacuum and
speaks of electron superconductivity in such cases. Elec-
tron pairing is actually realized [1], e.g., in the T ′ structure
of (Nd,Ce)2CuO4. The T ′ structure of this compound is
different from the T structure of La2CuO4, but is still
characterized by CuO2 planes [2]. However, increasing ex-
perimental evidence obtained in several cuprate supercon-
ductors suggests that the pairs exist above the critical
temperature either in the form of superconducting fluctu-
ations or preformed pairs. The latter aspect is apparent
in the underdoped (normal) region in which a clear pseu-
dogap essentially of the same magnitude as the supercon-
ducting gap is measured [3]. The pairing state of these
materials has d−wave symmetry, probably mixed with
s−wave [4]. All these signatures put strict constraints to
any microscopic model of the cuprates. Any theory of the
paired state must predict d and s symmetries, and the
pairing mechanism must be robust. It must survive well
into the normal state, and operate in a wide range of con-
centrations far from optimum doping.

In BCS theory, the first-order repulsion between like
charges is overcome by the second order interaction with
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phonons. In high-Tc superconductors the electron-phonon
interaction is strong and phonons must be expected to
contribute in an important way to the pairing interaction,
although their task looks harder because the repulsion in-
tegral U is large (several eV). However, the straightfor-
ward idea that the high-Tc phenomena are just a rescaled
version of BCS theory is not granted. The role of phonons
may be important, but is different, and some other ingre-
dient is essential.

Rather than proposing a new attractive interaction, we
wish to point out that the popular repulsive Three-Band
Hubbard model already leads to pairing. The model is:

H = H0 +W (1)

where the independent hole Hamiltonian reads, in the site
representation

H0 =
∑
Cu

εdnd +
∑
O

εpnp + t
∑
n.n.

[
c†pcd + h.c.

]
(2)

where n.n. stands for nearest neighbors [5]. The on-site
repulsion Hamiltonian will be denoted by

W =
∑
i

Uini+ni−, (3)

where Ui = Ud for a Cu site, Ui = Up for an Oxygen. As
in previous work [6], we use standard parameter values (in
eV), i.e., Ud = 5.3, Up = 6, t = 1.3, εd = 0, εp = 3.5. The
hole parameters Ud = 5.3 eV, Up = 6 eV differ somewhat
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from other literature estimates [7], and must depend on
the compound and doping. For La2CuO4, Up = 4 eV and
Ud = 10.5 eV have been recommended [8]. None of our
results depends qualitatively on the precise value of the
model parameters, since ours is basically a symmetry ar-
gument. The electronic properties of this model are under
intense investigation by several approximations based on
perturbation theory and the Bethe-Salpeter equation. The
FLEX approximation is a generalized RPA [9] and leads
to pairing and superconductivity in the three-band Hub-
bard model [10]. The excitation spectra of the 2D Hubbard
model have also been studied by a related self-consistent
and conserving T -matrix approximation by Dahm and
Tewordt [11]; we mention incidentally that recently dia-
grammatic methods have been successfully applied to the
photoelectron spectra of the cuprates in other contexts
too, like the spin-fermion model [12]. A perturbative ex-
pansion around the strong coupling limit, in powers of the
kinetic energy, requires a nonstandard cumulant expan-
sion, but is feasible, as shown quite recently by Citro and
Marinaro [13] for the p − d model which is the present
model with Up = 0. In this way, they have shown that
normal state properties like the specific heat as a function
of doping can be well understood [14]; they also derived
the effective pairing interaction in the same approxima-
tion [15] and studied the doping dependence of the super-
conducting transition temperature [16].

Our starting point is the observation that, due to the
planar C4v symmetry, there is actually no repulsion bar-
rier to overcome. In a series of papers [6,17,18] we have
introduced the two-hole singlet eigenstates of the Hamil-
tonian with zero Coulomb on-site repulsion (the so called
W = 0 pairs). They arise in the full plane, and also in the
clusters that possess the same full C4v symmetry around
a central Cu as the full plane. In the full plane, this situ-
ation is always realized, because W = 0 pairs can always
be obtained from holes at the Fermi level; in clusters, on
the other hand, the hole number (relative to the true hole
vacuum) must be such that two holes partially fill a de-
generate state. In the many-body problem, two holes at
the Fermi level in a W = 0 pair state do not interact
directly; however the pair is dressed by the interaction
with the background particles. By exact diagonalization
of cluster Hamiltonians with up to 21 atoms and 4 holes,
we demonstrated [18] that the dressed W = 0 pair is a
bound Cooper pair, and quantizes the magnetic flux like
superconductors do. Any strong distortion of the cluster
symmetry breaks the pairing and restores the normal re-
pulsion [17]. We also considered first-neighbor O–O hop-
ping and off-site interactions [17]. Remarkably, the off-site
repulsive interactions, when included, tend to enhance the
effect somewhat, so we devote the present study to the
on-site interaction effects. The binding energy of the pairs
in these clusters is of the order of tens of meV, which
is not comparable to any of the U and t input parame-
ters. The reason is that the interaction, which vanishes
identically for the bare W = 0 pairs, remains dynami-
cally small for the dressed quasiparticles. Indeed, by a di-
agrammatic analysis we demonstrated that low-order per-

turbation theory is a good approximation to the exact
diagonalization results and allows to understand that the
attraction in the d channel is due to virtual spin-flip ex-
citations. This suggests that a weak coupling theory may
be useful to study the pairing force, despite the fact that
U is not small compared to t. It is an obvious limitation
of the cluster approach that W = 0 pairs are possible
at discrete values of the hole concentration. Our previous
cluster calculations suggest that the mechanism operates
in a much broader range of hole concentrations than is re-
alized in actual cuprates, from very highly overdoped (as
in CuO4) to very low (as in Cu5O16). The diagrammatic
analysis further demonstrates that the effective interac-
tion is the result of a partial cancellation of positive and
negative contributions, so it is not necessarily attractive
in all cases; the general signature of W = 0 pairs is that
the absolute value of the interaction is much smaller than
in the other cases.

The mechanism we are considering is only a part of the
story, but it seems to be a most peculiar part, being related
to nothing but the C4v symmetry. For similar reasons here
we wish to make abstraction from phonon effects to see
how far the idealized description can account for reality
by itself. We believe that a mechanism which predictably
gets attraction out of repulsion is by itself of theoretical
interest.

Next, we have generalized the theory of pairing to the
full plane [19]. In short, one finds W = 0 pairs at the Fermi
level for any concentration and this leads to a Cooper-like
instability of the Fermi liquid. Pairing prevails for a range
of concentrations above half filling, in agreement with the
results [20] of the Renormalization Group technique. We
have shown that the full configuration interaction calcula-
tion can be performed recursively. At each step, one decou-
ples a class of virtual excitations while renormalizing the
matrix elements of H0 and W . At the end, one obtains an
exact, analytical canonical transformation producing an
effective Hamiltonian for the dressed pair. In order to get
actual numbers, however, we had to neglect the renormal-
izations in the final formula; this approximation is fully
justified at weak coupling.

In the present paper we extend the analysis of refer-
ence [18] by diagonalizing the Cu5O4 cluster with increas-
ing number nh of holes. We wish to demonstrate that the
power of the symmetry driven mechanism is such that
attractive interactions arise even in small clusters with
nh > 4, despite the high hole concentration. One can pro-
ceed from the true hole vacuum and insert holes until the
last two form a W = 0 pair; if the interactions produce
a bound state we conventionally speak of hole pairing.
Alternatively, one can proceed from the true electron vac-
uum and insert electrons until the last two form a W = 0
pair; if the interactions produce a bound state we conven-
tionally speak of electron pairing. These two expressions
simply mean that we get pairing by adding two holes (as
in La2CuO4) or two electrons (as in (Nd,Ce)2CuO4), re-
spectively [21]. The physical point here is that electron
pairs and hole pairs are related by a charge conjugation
symmetry and the very same basic mechanism or diagram
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Table 1. One-hole levels of the Cu5O4 cluster, with their sym-
metry labels, degeneracies g, and energy eigenvalues ε with
t = 1.3 eV, εp = 3.5 eV and εd = 0.

Symmetry g ε(eV)

a1 1 −1.643

e, b1 3 −0.43

a1 1 0.0

e, b1 3 3.93

a1 1 5.143

is operating in both cases. We find new instances of elec-
tron and hole pairing, again with a binding energy of a few
tenths of meV in the physical parameter space. We also
find a case when a W = 0 pair leads to a weak repulsion.
Further, we demonstrate how the two different symmetries
(A1 and B2) of W = 0 singlet pairs allowed by the cluster
are both necessary to produce the superconducting flux
quantization phenomenon in this cluster.

One reason for considering clusters again, after much
excellent work from several authors [22] and our own pre-
vious work on clusters and on the plane, is that in this
way we can test our canonical transformation approach
against the results of exact diagonalization. Another rea-
son is that we wish to explore the relation of the flux
quantization phenomenon to the symmetry group in the
presence of the vector potential, which breaks the transla-
tional symmetry. Our main questions are: can pairing be
reliably predicted by studying the behavior of the system
at weak coupling? Is the superconducting flux quantiza-
tion property exclusive of small clusters, or is it a general
consequence of symmetry?

2 One-body energy levels of the symmetric
9-site cluster

In the hole picture, the one-body energy levels of Cu5O4

are those displayed in Table 1. Here, the hole vacuum is a
state with no holes at all.

Two levels are triply degenerate, comprising twice de-
generate states of e(x, y) symmetry and states belonging
to b1; this accidental degeneracy is due to the fact that
in this small cluster any permutation of the four Cu−O
units bound to the central Cu is a symmetry; therefore,
the full symmetry group of the cluster is S4, which has
C4v as a subgroup, and admits degeneracy 3. Since this
property does not extend to the plane, we continue using
the irreducible representations (IRREPS) of C4v anyhow.

In the electron picture, the levels are met in reverse
order, but the sequence of symmetry labels remains the
same. Thus, one notices that there is an approximate
electron-hole symmetry, or charge conjugation symmetry,
in this model.

3 W = 0 pairs

Both in the full plane and in clusters, the W = 0 pairs are
due to the symmetry, but there are some differences be-
tween the two cases, that we wish to stress in this section.
Let us first review the theory for the plane [19]. Omitting
the band indices, we shall mean

|d[k]〉 = ‖k+,−k−‖ = c†k,+c
†
−k,−|vac〉 (4)

to be a two-hole determinantal state derived from the
Bloch eigenfunctions (|vac〉 is the true hole vacuum).

The point symmetry group of the Cu–O plane is C4v.
We introduce the determinants Rd[k] = d[Rk], R ∈ C4v,
and the projected states

Φη [k] =
1√
8

∑
R∈C4v

χ(η) (R) |Rd[k]〉 (5)

where χ(η)(R) is the character of the operation R in the
IRREP η. In the non-degenerate IRREPS, the opera-
tions that produce opposite Rk have the same character,
and the corresponding projections lead to singlets. Let
Ri, i = 1, ...8 denote the operations of C4v and k, k′ any
two points in the Brillouin Zone (BZ). Consider any two-
body operator Ô, which is symmetric (R†i ÔRi = Ô), and
the matrix with elementsOi,j = 〈d[k]|R†i ÔRj |d[k′]〉, where
k and k′ may be taken to be in the same or in different
bands. This matrix is diagonal on the basis of symmetry
projected states, with eigenvalues

O (η, k, k′) =
∑
R

χ(η) (R)OR (k, k′) (6)

where

OR (k, k′) =
〈
d[k]|Ô|Rd[k′]

〉
. (7)

Thus, omitting the k, k′ arguments, we get in particular

O
(

1A2

)
= OE +OC2 +OC4 +OC3

4

−Oσx −Oσy −Oσ′1 −Oσ′2 (8)

O
(

1B2

)
= OE +OC2 −OC4 −OC3

4

−Oσx −Oσy +Oσ′1 +Oσ′2 . (9)

If Ô is identified with W , since WE = WC2 = Wσx = Wσy

and WC4 = WC43 = Wσ′1
= Wσ′2

, one finds W
(

1A2

)
=

W
(

1B2

)
= 0. These are W = 0 pairs, like those studied

previously [18] in clusters. In the full plane, however, W =
0 pairs are obtained from holes at the Fermi level for any
filling.

Small clusters like Cu5O4 allow a nice illustration of
the theory because they also allow W = 0 2-body so-
lutions. This property is a consequence of their full C4v

symmetry around the central Cu. However, there are no
Bloch states in a finite cluster with open boundary con-
ditions, and the W = 0 singlet pairs come out differently.
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First, we may consider the orbitals of (x, y) symmetry in
Table 1, and form 2-hole determinants

d[x, y] = ‖x+, y−‖ = c†x+c
†
y−|vac〉

d[y, x] = ‖y+, x−‖ = c†y+c
†
x−|vac〉; (10)

they are eigenstates of H0 and have the W = 0 property,
since the amplitude of double occupation of any site is 0.
Unlike the case of the full plane, no projection like that
performed in equation (5) is necessary here to get the
property. In Cu5O4, there are two sets of (x, y) states,
so the x and y of the above equation may belong to the
same or to different sets. If the x and y states are taken
from the same set, the singlet

ψ1(1B2) =
d[x, y] + d[y, x]√

2
(11)

is an eigenstate of the kinetic energy and of W , belongs
to the W = 0 eigenvalue and to 1B2. W = 0 pairs of this
symmetry and of 1A2 exist in the full plane as well. If
the x and y states are taken from the different sets, we
denote one of the sets by a prime and consider two-hole
determinants like d[x, y′]; these are eigenstates of H0 and
are W = 0 pairs, however they do not belong to any of the
IRREPS of C4v. We can form singlet combinations with
the W = 0 property both in the 1B2 and 1A2 symmetry,
namely,

ψ2(1B2) =
d[x, y′] + d[y, x′] + d[x′, y] + d[y′, x]

2
, (12)

which belongs to 1B2 and

ψ(1A2) =
d[x, y′]− d[y, x′] + d[x′, y]− d[y′, x]

2
(13)

which belongs to 1A2. In addition, there are also 1A1 W =
0 pairs, using the degenerate x, y and b ≡ b1 orbitals. The
two-hole states

‖x+x−‖+ ‖y+y−‖√
2

≡ |x2 + y2〉 (14)

and

‖b+b−‖ ≡ |bb〉 (15)

are a basis of degenerate eigenstates of H0 having 1A1

symmetry. Diagonalizing W in this basis we get two-hole
eigenstates of H. The 2× 2 matrix of W is:∣∣∣∣ 〈bb|W |bb〉 〈bb|W |x2 + y2〉
〈bb|W |x2 + y2〉 〈x2 + y2|W |x2 + y2〉

∣∣∣∣ =

∣∣∣∣∣
Up
4

Up
2
√

2
Up

2
√

2

Up
2

∣∣∣∣∣ .
(16)

The lowest eigenvalue is 0 and the W = 0 pair is

ψ(1A1) = −
√

2
3
|bb〉+

√
1
3
|x2 + y2〉. (17)

This type of W = 0 pairs does not exist in the full
plane. The upper eigenvalue is 3Up

4 and the eigenfunction√
1
3 |bb〉+

√
2
3 |x2 + y2〉 is strongly affected by the on-site

repulsion.
Now consider the Cu5O4 cluster in the non-interacting

limit with 2 holes, which sit the lowest level of a1 symme-
try that we denote a for short. Let this be the new vacuum
state |0〉. Adding 2 holes, we partially fill the next degen-
erate levels, which can give rise to W = 0 pairs. Starting
with the above defined two-hole d determinants, we can
form 4-hole determinantal states, denoted by a capital D,
like for example

D[x, y] = c†x,+c
†
y,−|0〉 ≡ ‖x+a+, y−a−‖ ; (18)

in keeping with the notation of reference [19], below we
shall denote such configurations with the background a
orbital occupied for both spins as m states. We shall also
need the other 4-hole determinantal states, namely, the
α states, in which one of the background a spin-orbitals
is not occupied by holes, and the β states in which both
background a spin-orbitals are missing. For the Cu5O4

cluster in the non-interacting limit a similar situation is
realised if the new vacuum state is taken with 10 holes,
filling the lowest levels according to the aufbau principle.
Adding 2 holes, again we partially fill the next degener-
ate levels, which can give rise to W = 0 pairs. A similar
definition of m,α and β is possible, and more excited con-
figurations also exist.

The matrix elements of W in this model have no ex-
change terms, since only holes of opposite spin can in-
teract. The diagonal elements Wm,m can be expressed in
terms of orbitals p, q, r, s by the two-hole integrals

W (p, q, r, s) =
∑
i

Uip
∗(i)q∗(i)r(i)s(i). (19)

For example, the m state of equation (18) yields

Wm,m = W (x, a, x, a) +W (y, a, y, a) +W (a, a, a, a).
(20)

We note that this is the Hartree-Fock interaction. The
last term of the expression refers to the interaction be-
tween the background particles in the a spin-orbitals and
is the same for all the m states, and the rest brings out
single-particle corrections to the energy of the orbitals and
could be readsorbed in the definition ofH0. The important
point is that no term contains both x and y; no direct in-
teraction between the two added particles exists, because
of the W = 0 property.

The matrix element of the two-body operator W be-
tween determinants which differ by two spin-orbitals are
given by the well-known rule〈
‖k+, k−, u1 . . . un‖W

∥∥k′+, k′−, u1 . . . un
∥∥〉 =〈

‖k+, k−‖W
∥∥k′+, k′−∥∥〉 (21)

where k is different from k′ while u1 . . . un is a sequence of
occupied spin-orbitals. Using equation (7), one finds that
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in the full plane, the matrix elements between different m
states Wm,m′ vanish for W = 0 pairs. In the cluster, this is
not true. Let x denote the state of x symmetry taken from
the lower e degenerate level, and y′ denote the state of y
symmetry taken from the upper e degenerate level. Then,
the m states involving these orbitals are coupled by W
to those involving x and y, and to those involving x′ and
y′. Such matrix elements are forbidden in the full plane
by momentum conservation, but exist in finite systems
with open boundary conditions, having no translational
invariance. They couple m states belonging to different
eigenvalues of H0.

4 The effective interaction

We need a rigorous definition of the effective interaction
between two holes in many-body systems, and this re-
quires a careful analysis. Actually, we shall use two alter-
native definitions, one of which is suitable for numerical
exact diagonalization work, while the other one is much
more microscopic and analytical. Therefore, we have to
show that these two definitions essentially agree and lead
to the same physical conclusions. That will emerge from
the analytical treatment of the present section and from
the numerical results of Section 6.

4.1 First definition: ∆

When working by exact diagonalization, we consider
a cluster with nh holes; its interacting ground state
energy Eh(nh), obtained with the Hamiltonian of
equations (1, 2, 3), is referenced to the hole vacuum for
any nh. In terms of these eigenvalues we define, following
references [23,24]

∆h(nh) = Eh(nh) +Eh(nh − 2)− 2Eh(nh − 1). (22)

∆h(nh) is one definition of the pairing energy. This defini-
tion is simple, but requires computing the eigenvalues with
great accuracy, and has several drawbacks. It says nothing
about the dynamics which leads to pairing. Moreover, gen-
erally a negative∆ does not unambiguously imply pairing,
and further problems arise [25] since the above definition
depends on the comparison of systems with different nh.

However, the application of equation (22) is safe in the
specific case when the last two holes are in a W = 0 state;
in reference [18], we have shown that in this case ∆ really
coincides with the ground state expectation value of the
effective interaction, at least at weak coupling; if the inter-
action is attractive and produces a bound state, ∆h(nh) is
negative and |∆h(nh)| is the binding energy. These results
were obtained by analyzing exact diagonalization results
for clusters with nh = 4 by lowest-order perturbation the-
ory. In the present paper, we wish to extend those results
to larger nh by exact diagonalization and a more powerful
analytical method.

4.2 Second definition: Weff

The alternative definition is intrinsic to the nh holes sys-
tem and much more transparent. We achieve it by a canon-
ical transformation that determines the effective two-body
Hamiltonian H̃ from the many-body H of equation (1). We
set up the Schrödinger equation for the ground state of the
cluster with nh holes, namely

H|Ψ0〉 = E0|Ψ0〉. (23)

Here, E0 ≡ Eh(nh). We take the ground state configura-
tion of the noninteracting nh − 2 system as our vacuum
state (the non-interacting Fermi sphere). The exact |Ψ0〉
can be expanded in terms of excitations over the vacuum:

|Ψ0〉 =
∑
m

am|m〉+
∑
α

bα|α〉 +
∑
β

cβ|β〉+ ... (24)

here m runs over pair states, α over 4-body states (2 holes
and 1 e–h pair), β over 6-body ones (2 holes and 2 e–h
pairs). In Cu5O4 with 4 holes, the vacuum is the a2

1 con-
figuration and the expansion terminates with the β states;
it terminates anyhow in any finite system, after a finite
number of terms, so there are no convergence problems.
Next, we consider the effects of the operators on the terms
of |Ψ0〉. We write:

H0|m〉 = Em|m〉, H0|α〉 = Eα|α〉, ... (25)

and since W can create or destroy up to 2 e–h pairs,

W |m〉 =
∑
m′

Wm′,m|m′〉+
∑
α

|α〉Wα,m +
∑
β

|β〉Wβ,m.

(26)

For clarity let us first write the equations that include
explicitly up to 6-body states; then we have

W |α〉 =
∑
m

|m〉Wm,α +
∑
α′

|α′〉Wα′,α +
∑
β

|β〉Wβ,α (27)

where scattering between 4-body states is allowed by the
second term, and

W |β〉 =
∑
m′

|m′〉Wm′,β +
∑
α

|α〉Wα,β +
∑
β′

|β′〉Wβ′,β .

(28)

The Schrödinger equation (23) yields equations for the
coefficients a, b and c

(Em −E0) am +
∑
m′

am′Wm,m′ +
∑
α

bαWm,α

+
∑
β

cβWm,β = 0 (29)

(Eα −E0) bα +
∑
m′

am′Wα,m′ +
∑
α′

bα′Wα,α′

+
∑
β

cβWα,β = 0 (30)
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(Eβ −E0) cβ +
∑
m′

am′Wβ,m′ +
∑
α′

bα′Wβ,α′

+
∑
β′

cβ′Wβ,β′ = 0 (31)

where E0 is the interacting ground state energy. In prin-
ciple, the Wβ′,β term can be eliminated by taking linear
combinations of the complete set of β states. The complete
set of β states can be chosen in such a way that

(H0 +W )β,β′ = E′βδ(β, β
′) (32)

with this choice, the Wβ′,β terms are removed, while E′β
replaces the noninteracting eigenvalue Eβ . In other terms,
we get a self-energy correction to Eβ and a mixing of the
vertices, without altering the structure of the equations.
Then, we may rewrite equation (31) in the simpler form(

E′β −E0

)
cβ +

∑
m′

am′Wβ,m′ +
∑
α′

bα′Wβ,α′ = 0. (33)

Now, we exactly decouple the 6-body states by solving
the equation (33) for cβ and substituting into (29, 30),
getting:

(Em −E0) am +
∑
m′

am′

Wm,m′ +
∑
β

Wm,βWβ,m′

E0 −E′β


+
∑
α

bα

Wm,α +
∑
β

Wm,βWβ,α

E0 −E′β

 = 0
(34)

(Eα −E0) bα +
∑
m′

am′

Wα,m′ +
∑
β

Wα,βWβ,m′

E0 −E′β


+
∑
α′

bα′

Wα,α′ +
∑
β

Wα,βWβ,α′

E0 −E′β

 = 0.
(35)

Introducing renormalized interactions W ′, we may rewrite
these equations in the form

(Em −E0) am +
∑
m′

am′W
′
m,m′ +

∑
α

bαW
′
m,α = 0 (36)

(Eα −E0) bα +
∑
m′

am′W
′
α,m′ +

∑
α′

bα′W
′
α,α′ = 0. (37)

If in equations (29, 30) we drop the terms involving the β
states, they reduce to the same form as equations (36, 37),
except that in the latter equations some quantities are
renormalized. In other terms, the rôle of 6-body states is
just to renormalize the interaction in the equations for
the 2-body and 4-body ones, and for the rest they may be
forgotten about. If E0 is outside the continuum of excita-
tions, as we shall show below, the corrections are finite,
and experience with clusters suggests that they are small.
Had we included 8-body excitations, we could have elimi-
nated them by solving the system for their coefficients and

substituting, thus reducing to the above problem with fur-
ther renormalizations. This is a recursion method to per-
form the full canonical transformation; it applies to all the
higher order interactions, and we can recast our problem
as if only 2− and 4-body states existed.

Again, the W ′α′,α term can be eliminated from
equation (37) by taking linear combinations of the α
states. This is achieved by choosing the complete set of
α states in such a way that

(H0 +W ′)α,α′ = E′αδ(α, α
′). (38)

With this choice, the W ′α,α′ terms are removed, while E′α
replaces the noninteracting eigenvalue Eα. In other terms,
we get a self-energy correction to Eα and a mixing of the
vertices, without altering the structure of the equations.
Now equation (37) becomes

(E′α −E0) bα +
∑
m′

am′W
′
α,m′ = 0. (39)

Solving equation (39) for bα and substituting in
equation (36) we exactly decouple the 4-body states as
well. The eigenvalue problem is now

(E0 −Em) am =
∑
m′

am′ 〈m|S[E0]|m′〉 , (40)

where

〈m|S [E0] |m′〉 = W ′m,m′ +
∑
α

〈m|W ′|α〉〈α|W ′|m′〉
E0 −E′α

·

(41)

We introduce the diagonal elements of the α summation:

Fm,m =
∑
α

〈m|W ′|α〉〈α|W ′|m〉
E0 −E′α

; (42)

then, equation (40) becomes

E0am = (Em +W ′m,m + Fm,m)am

+
∑
m′ 6=m

am′ 〈m|Weff |m′〉 (43)

where for m 6= m′

〈m |Weff |m′〉 = W ′m,m′ +
∑
α

〈m|W ′|α〉〈α|W ′|m′〉
E0 −E′α

· (44)

The W ′m,m′ term does not arise in reference [19] because
in the full plane it vanishes by momentum conservation.

Equations (43, 44) determine the amplitudes am of
the m states in the nh-hole state and the ground state
eigenvalue E0 relative to the hole vacuum. Their solution,
inserted in equation (39) yields the coefficients bα and we
could proceed with the full calculation of Ψ0; this appears
to be hard for a large system. However, our task here is
to find the effective two-body Hamiltonian; this is much
less expensive.
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Indeed, equation (43) is of the form of a Schrödinger
equation with eigenvalue E0 for pairs with effective inter-
action Weff . Then we may interpret am as the wave func-
tion of the dressed pair, which is acted upon by an effective
Hamiltonian H̃. The change from the full many-bodyH to
H̃ is a canonical transformation which holds to all orders.
Weff is the effective interaction between dressed holes,
while F is a forward scattering operator for W = 0 pairs,
which accounts for the self-energy corrections of the one-
body propagators: it is evident from (43) that it just rede-
fines E′m. Also in Cooper theory [29] one meets electron-
phonon self-energy terms, which do not contribute to the
effective interaction. The basic spin-flip diagram respon-
sible for Weff had been identified before [18]. Any other
pairing mechanism not considered here, like off-site in-
teractions, inter-planar coupling and phonons, can be in-
cluded as an extra contribution to W ′m′,m which just adds
to Weff .

This way of looking at equation (43) is perfectly con-
sistent, despite the presence of the many-body eigenvalue
E0, because we are not compelled to reference the en-
ergy eigenvalues to the hole vacuum. We note that if we
shift H0 by an arbitrary constant ∆E in equation (25), by
setting

H ′0 = H0 −∆E (45)

the same shift applies to the eigenvalues Em, Eα, Eβ
and so on, and also to the renormalized quantities like
E′α, E

′
β . Therefore, the effective interaction Weff of equa-

tion (44) and the F matrix elements are unaffected by the
shift. Thus we can reference E0 to a new energy origin
by shifting the diagonal terms in equation (43) without
changing the off-diagonal terms. Since we wish to regard
equation (43) as a Cooper-like equation for the pair, it is
natural to set ∆E equal to the interacting ground state
energy eigenvalue for the nh − 2 hole system, relative to
the hole vacuum,

∆E = Eh(nh − 2). (46)

This quantity is obtained by diagonalizing the cluster
Hamiltonian with nh − 2 holes. In reference [19], dealing
with the infinite plane, this was our choice. The energy of
two independent holes, relative to the nh− 2 background,
is 2EF, where EF is the Fermi energy; when the effective
interaction is accounted for, the energy of the two bound
holes is 2EF +∆, where |∆| is the binding energy.

Up to this point, the treatment is exact. However, we
can make an easy use of equation (43) if we can neglect
the renormalizations in equation (44), setting W ′ → W
and E′α → Eα, which is fully justified in the weak cou-
pling case. This is the approximation that we proposed
in reference [19] and that we want to test in the present
paper. In fact, if we are primarily interested in the sym-
metry of the ground state, and in the presence or absence
of pairing, we can get these results without a large com-
putational effort. We exemplify the procedure for Cu5O4

in the nh = 4 case. Two degenerate m states are low-
est in the non-interacting limit, namely, the configuration

m = D[x, y] of equation (18) and m′ ≡ D[y, x], where the
x, y orbitals belong to the lower e level; the ψ(1A1) state
also is degenerate with m,m′, but by symmetry W can-
not mix it to them. As already noted, m and m′ do not
interact through the Wm,m′ term. To calculate Weff , we
rewrite W (Eq. (3)) in the orbital representation, with

c†i =
orb∑
ν

〈i|ν〉c†ν (47)

where ν runs over all the orbitals, obtaining

W =
orb∑
µνρσ

W (µ, ν, ρ, σ)c†µ,+c
†
ν−cσ,−cρ,+. (48)

The pair (ρ+, σ−) which is annihilated may correspond
to (y+, x−), (y+, a−), (a+, x−), (a+, a−). The first choice
gives nothing since it corresponds to a W = 0 pair; the
last choice yields a β state. To lowest order, only the α
states contribute, involving the excitation of either the a+

or the a− hole. Many of the W matrix elements vanish
by symmetry; we are going to neglect those connecting
to excited x′, y′ orbitals, which occur at higher energies,
because we are considering weak coupling.

Considering the contribution of (y+, a−), one finds
that the only α states coupled to D[y, x] by W are those of
the form |µayx| ≡ |µ+a+y−x−|, in which the hole in a− is
promoted to y− while y+ is scattered into µ+. Therefore,

Eα = εa + εµ + εx + εy, (49)

where εy = εx. One finds

〈|µayx|W |yaxa|〉 = −W (y, a, µ, y) (50)

and

〈|xaya|W |µayx|〉 = W (x, a, µ, x). (51)

Therefore, taking into account that each of the two back-
ground a holes can be promoted and this brings a factor
of 2, using (43) we obtain

〈m |Weff |m′〉 = −2
∑
µ

W (y, a, µ, y)W (x, a, µ, x)
E0 − (εa + εµ + 2εx)

· (52)

Since W (y, a, x, y) = W (x, a, y, x) = 0, the empty (of
holes) states µ belonging to the e representation yield 0.
The empty orbitals that contribute are those of the a1

symmetry, that will be denoted by a′, and those of b1
symmetry that we shall write b.

The a′ orbitals contribute to the repulsion, and the
b orbitals to the attraction. Indeed, W (x, a, a′, x) =
W (y, a, a′, y), and the contribution of the states of a1

symmetry is −2
∑
a′

W (x,a,a′,x)2

E0−(εa+εa′+2εx) ; since Eα > E0

this is positive. On the other hand, W (x, a, b, x) =
−W (y, a, b, y), since the orbitals of of b1 symmetry change
sign for a π

2 rotation. Therefore the contribution of the b
states is attractive. This is an example of the interference
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of opposite contributions to Weff , that we emphasised in
reference [19].

Therefore, at this stage, a self-consistent treatment of
equation (43) must be sought, because Weff depends on
the eigenvalue E0. A straightforward recursion approach
leads to a continued fraction solution, which has contri-
butions from all orders of perturbation theory.

4.3 Equivalence of the two definitions at weak
coupling

For weak coupling, however, a cruder but simpler approx-
imation is justified: one calculates Weff neglecting all self-
energy corrections, in such a way that E0 in (52) reduces
to 2εx + 2εa; this is the lowest (second-order) approxima-
tion W

(2)
eff . In the same, lowest-order approximation, the

shift in equation (46), which recasts equation (43) as a
two-body problem, in the Cooper-like form, is ∆E = 2εa;
further, one considers only the mixing of the degenerate
configurations m = D[x, y] and m′ ≡ D[y, x]. In the re-
sulting 2 × 2 problem, the diagonal entries are identical,
and the W

(2)
eff interaction produces the off-diagonal ele-

ments, with the result that the singlet is stabilized by
|W (2)

eff | and the triplet is destabilized by the same amount.
Therefore [26], ∆(4)(2) = W

(2)
eff . One obtains for ∆(4)(2)

the following second-order expression:

∆(4)(2) =

− 2

[∑
b

W (a, b, x, x)2

(εb − εa)
−
∑
a′

W (a, a′, x, x)2

(εa′ − εa)

]
(53)

where the sums run only over the one-body states of a and
b symmetry. This agrees with the result that we obtained
earlier [18] from a diagrammatic analysis of equation (22).
Thus, the two definitions of the effective interaction lead
to the same result, at least in the weak coupling limit.

We stress again that the sign of ∆(4)(2) is determined
by the relative weights of the virtual excitations to the
empty states of different point symmetry. In general, Weff

can produce attraction or repulsion, depending on the hole
concentration. This crude approximation will turn out to
be sufficient for qualitative purposes, i.e., to predict when
pairing occurs.

5 W = 0 pairs and charge conjugation

Consider the cluster with nh holes. As shown above, the
interesting situation arises when nh is such that, filling
the levels according to the aufbau principle,the last two
holes go to a degenerate level. Accordingly, we expect
that ∆h(nh) measures the effective interaction between
the holes of the W = 0 pair. In reference [18], we have

shown that this is the case at weak coupling. If the inter-
action is attractive and produces a bound state, |∆h(nh)|
is the binding energy. This situation can be realised with
nh = 4 in highly symmetric Cu–O clusters containing up
to 21 atoms [6]. The last 2 holes then go to the lowest level
of e symmetry.

According to Table 1, the Cu5O4 cluster has an up-
per e level, which is reached with 12 holes, so we are in-
terested in ∆h(4) and ∆h(12). Moreover, we can exploit
the approximate electron-hole symmetry of the problem
to obtain two more interesting cases. The approximate
symmetry consists in the fact that the same sequence of
symmetry labels is obtained by reading Table 1 from up
to down and in reverse order. The reverse order corre-
sponds to adopting the electron picture and starting from
the electron vacuum. Going to the electron picture, the
three-band Hubbard Hamiltonian becomes:

H =
∑
i

(2εi + Ui)−
∑
iσ

(εi + Ui)a
†
iσaiσ

−
∑

<i,j>σ

tija
†
iσajσ +

∑
i

Uini+ni−, (54)

W = 0 electron pairs are obtained for ne = 4 and 12 elec-
trons. Letting now Ee(ne) denote the ground state energy
of the cluster with ne electrons, the effective interaction
between the two electrons in the pair is measured by

∆e(ne) = Ee(ne) +Ee(ne − 2)− 2Ee(ne − 1). (55)

Since the dimensionality of the one-body basis is 18,

∆e(4) = Ee(4) +Ee(2)− 2Ee(3)
= Eh(14) +Eh(16)− 2Eh(15) = ∆h(16) (56)

and, similarly, ∆e(12) = ∆h(8).
We recall that we speak of electron pairs when two

added electrons partially occupy a degenerate state and
of hole pairs when the same situation is reached by
adding two holes; however the final situation is exactly
the same. For example, consider the W = 0 pair state of
equation (11). One readily verifies that in a canonical
transformation from holes to electrons, putting a†iσ = ciσ ,
the two-hole state becomes a two electron state of the same
form. Therefore the two-body W = 0 state is invariant un-
der charge conjugation, and if holes are paired, electrons
are also paired. In order to avoid switching all the time
between the two equivalent pictures, below we discuss ev-
erything in terms of holes. Summarizing the results of the
present Section, we can test the effective interaction in
Cu5O4 by calculating ∆h(nh) with nh = 4, 8, 12 and 16.

6 Numerical results and discussion

By an enhanced Lanczos routine, we computed the ground
state of the Cu5O4 cluster with even numbers nh of holes
and vanishing z component of the total spin; the param-
eter values are specified in the Introduction. The max-
imum size of the matrices (15,876) occurs for nh = 8;
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Table 2. Exact diagonalization results for ∆h(nh) (meV), us-
ing Up = 6 eV and Ud = 5.3 eV. For nh = 4, 8 and 16 pairing
takes place, and at nh = 12 the repulsion is drastically reduced.
For nh = 6 and 14 the W = 0 pairs are not involved and the
normal repulsion develops.

nh ∆h (meV)

4 −15.7

6 1469.2

8 −10.85

12 43.72

14 1109.2

16 −25.47

the nh = 12 and 16 cases are handled by transforming to
the electron picture. The results for ∆h(nh) are summa-
rized in Table 2. One sees that ∆h for nh = 4, 8, 12 and 16
is much smaller in absolute value than for other fillings, as
expected. This confirms that W=0 pairs are involved. In
particular, for nh = 4, 8 and 16 ∆h(nh) < 0 and pairing
occurs, while for nh = 12 a small repulsion prevails. When
pairing is obtained, this means that the renormalization
of the parameters inherent in the canonical transforma-
tion does not have important consequences. To see if the
behavior at nh = 12 is an exception, we have repeated
the calculations with scaled U values. Using Up = 0.06 eV
and Ud = 0.053 eV, which are � t and allow applying
perturbation theory, we still get a positive result, namely
∆h(12) = 0.0034 meV. Thus, even second-order pertur-
bation theory would suffice to predict ∆h(12) > 0 in this
case.

For nh = 4 we have an analytic second-order result
(Eq. (53)) and we can check its degree of validity by com-
paring with the exact diagonalization values of ∆. Mak-
ing use of the above standard values of the parameters we
calculate the relative error δ = 2

∣∣∣∆−∆(2)

∆+∆(2)

∣∣∣. It turns out
that δ ≤ 0.07 up to U/t ≈ 1. Thus, already the second-
order approximation is remarkably accurate in estimating
the effective interaction. We conclude that our treatment
based on the unrenormalized formula of equation (44)
correctly predicts the presence or absence of pairing, de-
pending of the hole concentration, and even a simple,
second-order approximation to it has a semi-quantitative
accuracy when compared with exact results.

The indications that we may draw from this section
are: i) our mechanism is operating for a wide range of
hole concentrations and produces a much reduced inter-
action |∆|, ii) this does not imply pairing at all concen-
trations, iii) we can predict if there is pairing or repulsion
in a particular case by our theory. The cluster approach,
however, has several limitations, the main size effect be-
ing that W = 0 pairs are possible at discrete values of the
hole concentration. In Cu5O4 with 4 holes, we are doping
with one electron, but in other cases we are far from the
physical concentrations. However, we are not yet trying
to make quantitative predictions, rather our point here is
that of testing our approach against exact solutions, which
is only feasible in small clusters.

Fig. 1. The Cu5O4 cluster with 4 flux tubes (black dots) car-
rying flux φ. X stands for Cu. The dotted lines represent the
td bonds providing a closed path around the center.

7 Flux quantization and pair symmetry

If a magnetic field is confined to a hole in any material
(flux tube) the flux φ is quantized in integer multiples of
the fundamental quantum φ0 = hc

e ; a flux φ = φ0 can
be gauged away, and any physical property, for example
the ground state energy, is a periodic functions of φ with
period φ0.

Bulk superconductors quantize the flux through a hole
in integer and half-integer multiples of φ0, because the
quasiparticles that screen the vector potential carry charge
2e. In finite systems the signature of superconductivity is
a ground state energy minimum at φ = 0 that is sepa-
rated by a barrier from a second minimum at φ = φ0/2.
With increasing the size of the system, the energy (or free
energy, at finite temperature) barrier separating the two
minima becomes macroscopic, and bulk superconductors
can swallow up only an integer or half integer number of
flux quanta. As emphasized by Canright and Girvin [27],
the flux dependence of the ground state energy is defi-
nitely a most compelling way of testing for superconduc-
tivity, and the existence of the two minima separated by
a barrier is a strong indication of superconducting flux
quantization.

In reference [27], superconducting pairing was obtained
by assuming a negative U ; a ribbon shaped cluster was
closed on itself with periodic boundary conditions along
its length, and the flux was inserted in the hole. In the
present problem, with a repulsive Hubbard model, the
mechanism of attraction is driven by the C4v symmetry,
and cannot operate with such an unsymmetric geometry.
The flux must be inserted in such a way that the sys-
tem is not distorted. On the other hand, we cannot make
holes in our small cluster because it would fall apart in
disconnected pieces. One should consider larger clusters
like Cu13O36, which allow W = 0 solutions for nh ≥ 10,
however the number of configurations > 1012 is outside
the scope of exact diagonalization methods.

So, we keep the Cu5O4 cluster geometry, but modify
its topology by adding a small hopping td between the
external Cu’s, in order to introduce a closed path around
the center, where screening currents can respond. Each td
bond forms a closed triangular loop with the central Cu
at the vertex (see Fig. 1).
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This geometry is a compromise, because the magnetic
field penetrates our small cluster; however, it lends itself
to an extension to the full plane, such that only the 4
central plaquettes feel a magnetic field, and the rest of
the plane only experiences a vector potential (see below).
Finally, we observe that a flux of the order of a fluxon
in a macroscopic system would be a small perturbation;
in the small cluster, however, the perturbation is small
only if the hopping integral td is taken small compared
to t. Numerically, the computations were performed with
td = ±0.01 eV.

We introduce a tube carrying flux φ inside each of
the triangles formed in this way. Every bond collects
the Peierls phase 2πi

R
A·dr

φ0
; by symmetry, t is unaffected

by the flux, while

td → tde
2πiφ
φ0 (57)

for a clockwise path, and the complex conjugate expres-
sion a counterclockwise path.

7.1 Superconducting flux quantization: numerical
results

According to Table 2, ∆h(nh) is negative and pairing re-
sults at φ = 0 for nh = 4, 8 and 16; in all three cases we
found that the ground state energy Eh(nh, φ) as a func-
tion of φ has clearly separated minima at zero and half a
flux quantum. Moreover, our criterion for pairing (∆ < 0)
also leads us to a much more stringent criterion for su-
perconducting flux quantization than is drawn from the
literature, since we need that both minima in the ground
state versus flux curves also correspond to negative ∆.
This is a much clearer signature of superconducting flux
quantization than the generally accepted presence of the
two minima, because it implies that the superconductor
remains a superconductor after swallowing up the half flux
quantum. Therefore, we computed ∆h(nh, φ) in order to
determine the flux dependence of the effective interaction.
When ∆h(nh, 0) < 0, then ∆h(nh,

φ0
2 ) is also negative. For

small enough td, the response function

R =
∆h(nh, φ)−∆h(nh, 0)

|td|
(58)

is an intrinsic property of the original cluster with td =
0. In Figure 2 we show R for several nh values versus
φ
φ0

. All the R curves have a local minimum at φ = 0,
where they vanish; φ = φ0/4 is a maximum and a second
minimum occurs at φ = φ0/2; the nh = 4 curve is reduced
by a factor of 3. The barrier gets lower with increasing nh,
but the same qualitative trend can be seen in all cases.
The numerical data also show that changing the sign of
td produces a rigid shift of the nh curves by φ0

2 such that
the two minima interchange their places.

In Figure 2 we also report the absolute value
| 〈Ψ0(φ)|Ψ0(0)〉 | of the overlap between the the ground
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Fig. 2. Solid line (right scale):| 〈Ψ0(φ)|Ψ0(0)〉 |. The other lines
(left scale) show the dimensionless response function R of
equation (58) for nh = 4, 8 and 16. Note that for nh = 4,
∆h(4, φ0

2 )−∆h(4, 0) ≈ 0.3td, but ∆h(4, φ0
2 ) is negative.

state eigenvectors in the presence and in the absence of the
flux, for nh = 4. It is clear that |

〈
Ψ0(φ0

2 )|Ψ0(0)
〉
| = 0, and

therefore the pairing state at zero flux and half fluxon are
orthogonal. There is a clear analogy with the BCS theory;
in that case, the Cooper wavefunction has s symmetry and
the total magnetic quantum number of the pair vanishes
in the absence of flux, but not at half a flux quantum [28].
Similar results for the overlap are obtained for the other
nh values which correspond to partially filled shells.

Our code automatically classifies the eigenvectors ac-
cording to the IRREPS of C4v. For positive td the point
symmetry of the ground state wavefunction changes from
1B2(x2 − y2) at φ=0 to 1A1(x2 + y2) at φ = φ0

2 . For
negative td the symmetry labels of the two minima are
interchanged. For electron pairing, the symmetry of the
states is the same as in the hole case.

Since the vector potential lowers the symmetry, the
eigenvectors cannot generally be classified according to
the IRREPS of C4v; however numerical data show that at
half fluxon, the symmetry is dynamically enhanced (see
below).

7.2 Group theory aspects of superconducting flux
quantization

These findings are required by general symmetry princi-
ples. In the absence of td, the full invariance group of the
cluster is S4 and the interacting ground state is degen-
erate, with 1A1 and 1B2 components. A nonzero td at
φ = 0 reduces the symmetry to the C4v subgroup; it turns
out that with a positive td the expectation value of the
magnetic perturbation is negative on 1B2 and positive
on 1A1; therefore the ground state is 1B2 at td > 0
but changes symmetry if the sign of td is reversed. Upon
switching the vector potential A, the Cu–Cu hopping is
complex and chiral, so the symmetry is lowered again from



M. Cini et al.: Pairing in the Hubbard model: the Cu5O4 cluster versus the Cu–O plane 279

X O X O X O X O X

O O O O O

X O X O X O X O X

X O X O X O X O X

X O X O X O X O X

X O X O X O X O X

O O O O O

O O O O O

O O O O O

Fig. 3. Pattern of the vector potential A due to 4 flux tubes
(black dots) carrying flux φ. X stands for Cu. The line integral
of A along each bond parallel to the arrow is φ

2 .

C4v to its subgroup Z4, which contains only the rotations.
Since Z4 is abelian, there are no degeneracies for a generic
φ, so there are no W = 0 pairs and repulsion prevails.
With increasing the flux from 0, the ground state energy
increases to a maximum. Then it decreases because, at
φ = φ0

2 , the Cu–Cu hopping of equation (57) becomes −td,
which is real; then the full C4v symmetry is restored, res-
urrecting the W = 0 pairs. The recovery of C4v at φ = φ0

2
enables us to assign the eigenvectors to the IRREPs, as
noted above. The change of symmetry of the pair is also
readily understood: the perturbation caused by td > 0 at
φ = 0 becomes the opposite at half fluxon, so the 1A1 state
is lowest now. The signature of superconducting pairing is
not only the existence of a well defined second minimum
at half flux quantum, but also the fact that it corresponds
to a ∆ <0 situation, like at φ = 0.

This symmetry argument extends to the full plane. To
see that, consider the pattern of Figure 3. Here, the Cu
sites are marked by X and the Oxygen sites by O; the
black dots stand for tubes carrying flux φ each, symmet-
rically disposed around the central Cu. Varying φ by an
integer multiple of φ0 corresponds to a gauge transfor-
mation leaving all the physical properties invariant. The
arrows help to visualize a convenient choice of the gauge
at general φ. Namely, running along an oriented bond in
the sense of the arrow,∫

→
A · dr =

φ

2
; (59)

along the other Cu–O bonds, not marked in the figure,∫
A · dr = 0. One sees that in this way the flux through

any closed path corresponds to the number of tubes sur-
rounded by the path. The reflection operations of C4v are

equivalent to φ → −φ, reverse the directions of the ar-
rows and for a generic φ the symmetry group reduces to
Z4. However, at φ = φ0

2 the reversal of the magnetic field
in the tubes corresponds to a jump by φ0, and this is
equivalent to a gauge transformation: this implies that
the symmetry group gets larger, the new symmetry op-
erations being reflections supplemented by a gauge trans-
formation. Indeed, it follows from equation (59) that the
hopping parameter becomes it along the arrows, while it
remains equal to t along the unmarked bonds of Figure 3.
Any reflection operation simply changes the signs of all
the hoppings along the marked bonds. Now consider the
unitary transformation S which changes the signs of all
the Cu orbitals along both diagonal, except the central
Cu. Since S also has the effect of reversing all the arrows,
σ×S is a symmetry, for all reflections σ in C4v. Moreover,
since the product of two reflections is a rotation, the group
C̃4v including the rotations and the reflections multiplied
by S is isomorphic to C4v. The W = 0 pairs appropriate
for half a flux quantum must involve two holes belonging
to the degenerate IRREP of C̃4v. In this way, at φ = φ0

2
the full symmetry is restored, allowing again for pairing
and negative ∆. The W = 0 quasiparticles have just the
correct symmetry properties in the presence of the vector
potential to provide superconducting flux quantization in
macroscopic systems.

8 Conclusions

We have examined the properties of the W = 0 pairs
by performing numerical diagonalizations of the Cu5O4

cluster for various fillings. Some of these fillings are not
representative of the concentrations that have been re-
alised in the cuprates, but our theory depends on sym-
metry and the concentration range to which it applies is
wider than that obtained experimentally. We have shown
that the effective interaction between the two holes in the
W = 0 pair can be obtained by computing ∆ by exact di-
agonalization or, alternatively, by an analytical, recursive
canonical transformation; we have detailed the latter ap-
proach, and derived a weak coupling approximation that
agrees with the numerical results for ∆ and with a previ-
ous diagrammatic analysis. Pairing occurs when ∆ < 0.
An approximate symmetry under charge conjugation ex-
ists leading to electron pairing as well as hole pairing in
the sense defined in the Introduction. The numerical data
confirm that when the filling is such that W = 0 pairs
are involved, ∆ is small in absolute value, while the other
fillings lead to strong repulsion. In one case, the W = 0
pair leads to a small repulsion, showing that the existence
of pairing is not a general property independent on filling.
In all cases, we found that pairing or its absence can be
reliably predicted by studying the behavior of the system
at weak coupling, which supports the approximations that
we performed in a study of the full plane in reference [19]
at least in some concentration ranges. We stress, however,
that the instability of the Fermi liquid against a pairing
interaction does not grant superconductivity, since there
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is a competition with other order parameters. Further in-
vestigations are necessary to analyze this point very close
to half filling, where the antiferromagnetic order prevails
and the behavior could require a strong coupling analy-
sis. Moreover, we expect that the renormalization of the
dispersion relation cannot be neglected [20].

In the Cu5O4 cluster the exact diagonalization results
show that W = 0 pairs quantize flux in the superconduct-
ing way. The ground states in presence of zero and half
fluxon have different symmetries, like in BCS supercon-
ductors. The superconducting flux quantization property
is due to the fact that the symmetry group appropriate at
half flux quantum in isomorphic with C4v, and this is not
limited to small clusters, but general. Flux quantization
and pairing fit well together, both being consequences of
the same symmetry principle.
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